INTERCOUPLED THERMOELASTICITY WITH A FINITE
VELOCITY OF HEAT PROPAGATION
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General theorems are derived concerning intercoupled thermoelasticity with a finite velocity
of heat propagation. The variational principle is applied and the solution to intercoupled prob-
lems is given in an integral form analogous to the Kirchhoff formula.

1. When the principles of thermodynamics of irreversible processes are applied to deformations of
solids, one obtains fundamental laws which govern real processes in elastic bodies. In problems concern-
ing the deformations of a medium which interacts with external fields, the external forces are not given
as functions of the space coordinates of a point and of time but are established, instead, from the solution
to systems of simultaneous equations: equations of the mechanics of deformable bodies and equations of
the external fields. In such a formulation it becomes necessary to consider equations of both elasticity
theory and heat conduction. The deformation of a body by mechanical or thermal forces is accompanied
by a coupling effect due to interaction between the deformation field and the temperature field. This effect
is manifested in the generation of thermoelastic waves, in the thermoelastic dissipation of energy.

The velocity of heat propagation, according to the formula v = Va/7T4, is in metals of the same or-
der of magnitude as the velocity of sound and in polymers, dielectrics, and amorphous materials equal to
the latter. For this reason, in problems of intercoupled dynamic thermoelasticity, where the velocity of
sound is taken into consideration, it is necessary to consider also the velocity of heat propagation. As-
suming an infinite velocity of heat propagation in dynamic problems of thermoelasticity results, formally,
in the appearance of stresses at a given point before the elastic wave has arrived; this becomes very ob-
vious in the analysis of a thermal shock at a half-space surface.

The equations of intercoupled thermoelasticity with a finite velocity of heat propagation are
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where @ denotes the temperature rise, 1 = Toa(M + 2u/3), Ty denotes the temperature before heating,
0ik is the stress tensor, Fj are volume forces, and p denotes the density of the medium. To this system
must be added the equation of coupling between the deformation tensor and the components of the displace-

ment vector:
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We will derive the energy equation for intercoupled thermoelasticity with heat sources in the medium,

Let us consider such a system of equations:
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where Q{x,t) denotes the intensity of heat sources.
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We multiply (4) by vi, integrate over the volume according to the Gauss theorem, and obtain
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where B denotes the body volume, A denotes the surface bounding the body, and P; denotes the surface
loading. :

The Duhamel—Neumann formula
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transforms (6) into
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Equation (8) cxpresses the law of encrgy conservation in a thermoelastic medium, but it does not explicitly
account for the presence of heat sources and for the femperature rise in the bedy. Transforming (5) and

introducing the thermal energy function P = v/2na S ©%dV as well as the dissipation function
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we obtain the energy equation
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(s denotes the entropy). The right-hand side of this equation includes heat sources which produce a de-
formation field and a temperature field. Our dissipative function differs from Biot's analogous dissipative
function by the additional term representing the accelerated increase of the system entropy. When assum-
- ing an infinite velocity of heat propagation, therefore, we have less dissipated energy than in the case of a
finite velocity.

With the aid of Eg. (11), one can prove the uniqueness of the solution to intercoupled thermoelasticity
problems with constraints and with a finite velocity of heat propagation.

2. The application of direct methods to the solution of intercoupled thermoelasticity problems is
fraught with difficulties; on the other hand, approximate methods based on variational principles are ef-
fective.

We will establish the variational principle for intercoupled thermoelasticity. Considering the iso-
thermal deformation energy
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then transforming this expression by means of the Duhamel—Neumann formula and the equation of motion,
we obtain the relation
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The left-hand side of Eq. (13) represents the virtual work of volume, surface, and inertia forces, while
the right-hand side represents the virtual work of internal forces.
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Noting that the second term on the right-hand side of Eq. (13) includes the temperature, we add
another equation here. Vector H will be related to the thermal flux vector q and the entropy as follows:
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We also introduce the thermal potential P and the dissipation functions D. Considering (16) and (13),
we have the variational principle stated as follows:
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saying that the variation of the sum of the deformation work, the thermal potential, and the dissipation
function is equal to the virtual work of external forces, the virtual work of inertia forces, and the surface
heating., The thermal potential and the dissipation function have been defined according to
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The components of the displacement vector vy and the components of vector H; will be represented
as follows:

u; = Euij (xx)q;(8), H; = EHij (xx) g5 (0), (19)
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where 'qj are generalized coordinates, éuj and 6Hj will be assumed independent of time, so that the follow-
ing respective definitions will apply:
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Principle (17) can be expressed in terms of Lagrange equations of motion for energy dissipating systems
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where D = Ty/2n 5 (f{i)de and Q; is the generalized force:
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If the intensity of the entropy source is defined as
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and the surface intensity of the entropy source is introduced as
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then (17) can be expressed as
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Equation (23) can be integrated as follows: without surface heating, the work of volume and surface forces

is expended on changing the kinetic energy, the isothermal deformation energy, the thermal function, and

also on increasing the system entropy (at o, = 0); with surface heating, o = 0 and the system entropy de-

creases, i.e., less energy is dissipated under a mechanical load on the body.

3. We will now represent the displacements as sums of a potential and a solenoidal component:
u; = D,; + €ixP.i» (24)

so that the system of intercoupled thermoelasticity equations in dimensionless variables
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A Laplace transformation of (26) and (28) with respect to the variable 7, with homogeneous initial condi-
tions, will yield
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Eiiminating function @ from (29) and (30) yields
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where € = m1; is the coupling parameter.
Let us consider the solution to the equation
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in an infinite region. With homogeneous initial conditions, the solution to (32) is
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We write down the following identity:
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With the Gauss theorem and the Green transformation, we then obtain
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where G is the transform of the Green function which corresponds to the thermoelastic potential &,
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Function H(gq, y, 7) will be sought in the following form:
H=H,--eH +eH,+ ... (38)

Expanding (34) into a Maclaurin series in € and retaining only the terms of not higher than the first order
in €, we have
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Inserting (39) into (33) and a subsequent Laplace transformation yield
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at 7 < rM.

The expressions for H; and 11, have an analogous structure, but are not shown here because of their
unwieldiness. Having determined the values of H and knowing the temperature of the body surface, one
can calculate the temperature inside the body according to Eq. (37). This equation is analogous to the
well known Kirchhoff equation of elastokinetics. Such an equation is also obtained in the case of mechanical
loads on the body.

Equation (40} indicates that, when the body boundary heats up, a thermoelastic wave propagates as
follows: a thin layer of material first heats up, then expands, and then becomes a source of an elastic
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compression wave (41), whereupon a thermal wave travels through time 7 > rM and raises the temperature
of the medium at a given point.

We obtain a thermoelastic wave, subject to damping and dispersion, which is not characteristic for
solutions of nonintercoupled problems of thermoelasticity.

At M =1, according to (40) and (41), we obtain discontinuous solutions, i.e., when the velocity of
heat propagation is equal to the velocity of sound, then shock waves are generated by external impulses
and, therefore, additional conditions must be stipulated, if it is to become feasible to apply the equations
of continuum mechanics.

The appearance of shock waves is characteristic when a finite velocity of wave propagation is as-
sumed, while at an infinite heat velocity only a discontinuity of stresses occurs during a continuous change
of temperature, a so-called isothermal shock, which has certainly no physical justification.

NOTATION

@ is the temperature;

v is the velocity of thermal wave;

a is the thermal diffusivity;

A, i are the Lamé constants;

uj are displacements;

Q is the intensity of heat sources;

q is the thermal flux;

% is the thermal conductivity;

T*  ig the relaxation time

Cce is the specific heat at a constant deformation;
a7 is the linear thermal expansivity;

e is the first invariant of the deformation tensor.
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